Кошки и гены. На главную

 


Глава 1.
Гены и хромосомы
Часть 2


Откуда берется этот белок? Мы знаем, что белки — это сложные последовательности относительно простых органических молекул — аминокислот. Именно набор аминокислот и последовательность их объединения в белке определяют его биологическую активность. Точно так же, как смысл тех слов, которые я сейчас пишу, определяется набором и последовательностью букв в них. В нашем алфавите 33 буквы.

Белковый алфавит состоит из 20 аминокислот. Замена одной из аминокислот в белке на другую часто приводит к таким же серьезным последствиям для его функции, как замена одной буквы в слове для его смысла. Так, если заменить одну аминокислоту в тирозиназе — белке, о котором мы только что говорили, — он окажется неспособным превратить тирозин в меланин, и кот будет белым. Такие замены называют мутациями, и к ним мы еще не раз будем возвращаться. В общем-то вся эта книга — о мутациях у кошек.

Пока же продолжим анализ нашего белка. Что задает последовательность аминокислот в нем? Откуда меланоцит знает, что ему нужно сшивать именно эти аминокислоты именно в такой последовательности, чтобы получилась тирозиназа?

В каждой клетке есть специальные устройства для синтеза белков — рибосомы. Это своего рода станки с программным управлением. Роль программы выполняет информационная рибонуклеиновая кислота (иРНК). Это длинная молекула, состоящая из азотистых оснований. Их четыре: аденин (А), гуанин (Г), цитозин (Ц) и урацил (У). Азотистые основания соединены друг с другом в длинную цепь.

Роль звеньев в цепи РНК выполняют рибоза и фосфатные остатки. Последовательность оснований в РНК и служит программой для кодирования набора и последовательности аминокислот в белке. Но что же получается? Аминокислот 20, а азотистых оснований всего четыре. Как регулируется их соответствие? Почти так же, как соответствие 33 букв алфавита с двумя знаками — точкой и тире в азбуке Морзе.

У всех живых организмов определенной тройке (триплету — так научней) оснований в иРНК — соответствует определенная аминокислота в белке. Триплет УУГ соответствует лейцину, ГАГ — глутаминовой кислоте, и так далее. Сейчас генетический код — то есть порядок соответствия аминокислот триплетам азотистых оснований — детально расшифрован, и вы можете найти его в любом учебнике.

Этот код универсален: принципы кодирования одинаковы и у нас с вами, и у наших котов, и у всех прочих обитателей Земли. Из этого следует, между прочим, что если вы подсунете кошачьей рибосоме человеческую РНК, то она (кошачья рибосома) без тени сомнения построит в кошачьей клетке человеческий белок. И наоборот. Хорошо это или плохо? Ответ диалектический: когда как. Но к этому мы тоже еще вернемся.

Теперь же зададим следующий вопрос. Что определяет последовательность оснований в РНК? Ответ вы знаете из школьного учебника. РНК синтезируется на ДНК. Именно ДНК является главным носителем генетической информации.

Гены — это фрагменты ДНК, ответственные за синтез определенных молекул РНК, которые в свою очередь участвуют в синтезе определенных белков или любым другим путем регулируют биохимические процессы в клетках. Поскольку же все признаки любого организма — это в конечном счете результаты биохимических превращений веществ, то справедливо будет утверждение, что гены кодируют развитие признаков. Информация, закодированная в генах, называется генотипом, а результат ее воплощения в признаках — фенотипом.

ДНК, как и РНК, состоит из азотистых соединений. Отличия, казалось бы, минимальные: вместо рибозы в состав ДНК входит дезоксирибоза, вместо урацила — тимин (Т). Главная особенность этой молекулы, которая ставит ее в привилегированное положение среди биологических молекул, — это ее способность к самокопированию. Одна нить ДНК может синтезировать дополнительную, комплементарную себе цепь, присоединяя азотистые основания по строго определенным правилам: Т к А, Г к Ц и наоборот.

Этот процесс создания комплементарной молекулы называется репликацией. Именно он обеспечивает изумительную точность самовоспроизведения живых систем в длинной череде поколений и клеточных делений. К этому великому и важному процессу мы еще вернемся на страницах нашей книги.

А сейчас нас интересует другой процесс: транскрипция. Так называется синтез РНК. Он базируется на том же принципе комплементарности. Цепь ДНК присоединяет У к А, Г к Ц, Ц к Г, А к Т, а специальные ферменты транскрипции — РНК-полимеразы — сшивают их друг с другом.

Этот первичный транскрипт — информационная проРНК — отделяется от ДНК, покидает клеточное ядро и уходит в цитоплазму, где достигает рибосомы и работает в роли программы трансляции — синтеза белка. Вернее, не он работает, а то, что от него останется после того, как с ним поработают клеточные редакторы.

На предыдущую | В оглавление | На следующую
 

 

 

2010. Кошки и гены.