Кошки и гены. На главную

 


Глава 3
Если бы Мендель разводил кошек

Часть
6


Нарушения второго закона Менделя — закона расщепления — часто наблюдаются при скрещивании гетерозигот по летальным или сильно снижающим жизнеспособность генам.

Так, если мы скрещиваем двух бесхвостых кошек, гетерозиготных по аллелю мэнской бесхвостости М, то получается расщепление 2:1 (2 бесхвостых и 1 хвостатый) вместо менделевского 3:1. Причина нарушения в том, что гомозиготы ММ гибнут до рождения.
 

Гаметы самки
Гаметы самца
 
M m
M
MM
Гибнут
 
Mm
Без хвоста
m
Mm
Без хвоста
 
mm
С хвостом

Именно поэтому невозможно получить чистую, нерасщепляющуюся породу мэнских бесхвостых кошек: при скрещивании бесхвостых всегда будут рождаться и хвостатые потомки.

Очень интересны нарушения третьего закона Менделя — закона независимого расщепления признаков при скрещивании особей, различающихся не по одному, а по двум или большему числу признаков. Причины и следствия этих нарушений могут быть самыми разными. Поговорим о некоторых из них.

Одной из причин зависимого расщепления двух признаков может быть сцепление генов. Мы говорили о том, что гены не болтаются в клетке по отдельности, а сцеплены друг с другом в составе хромосом. Если 50 000 генов разделить на 38 хромосом, то на каждую хромосому в среднем придется более чем по 1 000 генов. До сих пор мы рассматривали гены, которые входят в состав разных, негомологичных хромосом. Естественно, что такие гены расходятся по гаметам независимо друг от друга.

Если же мы возьмем гены, находящиеся в одной хромосоме, то обнаружим, что они расходятся согласованно. Если бы ген черной окраски был тесно сцеплен с геном-ослабителем, то во втором поколении от описанного выше скрещивания голубого кота с серой полосатой кошкой мы получили бы расщепление не на 16 генотипических классов, а только на 4. Вместо четырех типов гамет образовалась бы только два AD и ad.

Я не случайно употребил здесь выражение «тесно сцеплены». Только в том случае, если два гена находятся в хромосоме очень близко, они почти всегда будут расходиться по гаметам вместе. Если же один из них расположен от другого на некотором расстоянии, то возникает возможность расхождения аллелей этих двух генов в разные гаметы.

Мы говорили с вами о том, что в ходе подготовки к первому делению мейоза гомологичные хромосомы способны обмениваться отдельными участками, рекомбинировать гены. Чем дальше друг от друга расположены два гена в хромосоме, тем более вероятен обмен, тем больше характер расщепления по контролируемым ими признакам будет приближаться к тому, что предписан третьим законом Менделя.

Таким образом, по степени нарушения этого закона каждой конкретной парой генов мы можем судить о расстоянии между ними на хромосоме. На этой закономерности основан рекомбинационный принцип создания генетических карт. С использованием этого метода было установлено, что гены белой пегости 5 и полидактилии Pd находятся в одной хромосоме на расстоянии, равном 35 % ее длины.

Когда мы говорим о третьем законе Менделя, следует помнить, что он справедлив (с указанными выше ограничениями) для тех случаев, когда признаки контролируются разными генами. Например, цвет и длина шерсти зависят от разных генов и наследуются независимо. Цвет шерсти и острота слуха — безусловно различные признаки — контролируются разными генами, но нарушения и того, и другого признака могут называться одной мутацией.

Яркий пример такого рода множественного, или плейотропного действия гена — проявление мутации доминантной белой окраски W. Гомо- и гетерозиготные носители этого аллеля белые, но, кроме того, они часто имеют голубые глаза и ослабленный слух. Здесь не следует ожидать независимого расщепления по этим трем признакам именно потому, что нарушения в каждом из них вызываются мутацией одного гена.

Есть, однако, много примеров противоположного свойства: когда за развитие одной системы отвечают несколько генов. Вы знаете, что на окраску шерсти влияет и скорость миграции меланобластов, и интенсивность синтеза пигментов в меланоцитах, и распределение пигментных гранул в волосе. Результирующий признак — окраска шерсти — зависит от согласованного действия генов, отвечающих за каждый из этих процессов. Попробуем разобраться с характером этого взаимодействия.

Один мой знакомый скрестил своего белого кота с черной кошкой. В потомстве от этого скрещивания он получил двух белых и двух серых котят. Этот результат его так удивил («Откуда взялись серые?!»), что он устроил скандал хозяйке черной кошки. Хозяйка резонно возразила ему, что его возмущения были бы понятны, если бы котята были не похожие на отца, но они-то непохожи на мать! После жарких Дебатов о том, кто виноват, они перешли к вопросу, что Делать, и решили обратиться ко мне. Это был первый Разумный поступок одного из участников этой истории.

На предыдущую | В оглавление | На следующую
 

 

 

2010. Кошки и гены.